DOI: 10.11931/guihaia.gxzw201801020

引文格式: 方志荣,周才懿,李佩华,等. "固液双层"培养法诱导马铃薯'米拉'试管薯的研究 [J]. 广西植物,2018,38(9): 1172-1182 FANG ZR, ZHOU CY, LI PH, et al. Microtuber induction of potato cultivar 'Mira' by "solid + liquid double-layer" culture [J]. Guihaia, 2018,38(9): 1172-1182

"固液双层"培养法诱导马铃薯 '米拉' 试管薯的研究

方志荣,周才懿,李佩华,清 源

(西昌学院,四川西昌615013)

摘 要:该研究以马铃薯 '米拉' 品种的脱毒试管苗为材料 ,采用"固液双层"的培养方式,通过正交试验对其试管苗壮苗生长阶段和试管薯诱导阶段的培养基进行优化,并通过单因素试验研究蔗糖浓度、光照条件和 CCC 浓度对试管薯结薯的影响。结果表明:在"固液双层"培养中,'米拉' 壮苗培养阶段优化的培养基为改良 MS 培养基(硝酸铵为 2 000 mg \cdot L $^{-1}$ 、硝酸钾为 2 000 mg \cdot L $^{-1}$) + 500 mg \cdot L $^{-1}$ CCC + 0.1% 活性炭 + 0.1 mg \cdot L $^{-1}$ DA-6 + 1 mg \cdot L $^{-1}$ G-BA + 0.1 mg \cdot L $^{-1}$ NAA + 3%蔗糖 + 6 g \cdot L $^{-1}$ 琼脂 $_{1}$ PH 5.8。试管薯诱导及生长阶段优化的培养基为 MS ,培养基(微量元素和铁盐的用量为 MS 培养基的 2 倍) + 1.5% 活性炭 + 4 mg \cdot L $^{-1}$ G-BA + 8%蔗糖。在试管薯诱导阶段,弱光 4 h \cdot d $^{-1}$ 培养诱导的试管薯,结薯指数、大薯率、薯块重量均优于暗培养。"固液双层"培养是一种低成本的方法,在组织培养室内就可以大量繁殖 '米拉'试管薯,并且能增加原种的数量,这种方法也能用于马铃薯其他栽培品种试管薯的诱导。

关键词: 马铃薯,试管薯,6-苄基腺嘌呤,矮壮素,活性炭,胺鲜酯,组织培养

中图分类号: Q945.51 文献标识码: A 文章编号: 1000-3142(2018)09-1172-11

Microtuber induction of potato cultivar 'Mira' by "solid + liquid double-layer" culture

FANG Zhirong , ZHOU Caivi , LI Peihua , OING Yuan

(Xichang College , Xichang 615013 , Sichuan , China)

Abstract: Virus-free plantlets of potato cultivar 'Mira' were used as experimental material to induce potato microtuber by a two-step culture method. In the first step , nodal cuttings (with one or two leaf) of potato plantlets were inoculated solid medium for culturing vigorous potato plantlats. After 20 d , liquid medium was added on the solid medium to proceed to the second step for induction of potato microtuber. The optimum culture media at the stages of culturing vigorous potato plantlets and induction of potato microtuber were obtained by means of orthogonal design , and the effects of sucrose concentration , light condition and CCC concentration on induction of potato microtuber were also studied. The results were as follows: the optimal medium at the stage of culturing vigorous potato plantlets was modified by MS medium (NH_4NO_3 was changed to 2 000 mg • L^- and KNO_3 was changed to 2 000 mg • L^- in MS medium) + 500 mg • L^- CCC + 0.1% activated carbon + 0.1 mg • L^- DA-6 + 1 mg • L^- 6-BA + 0.1 mg • L^- NAA + 3% sucrose + 6 g • L^- agar , pH

收稿日期: 2018-05-21

基金项目: 四川省科技厅项目(2016NZYD0003); 四川省教育厅项目(16ZB0265) [Supported by Program of Department of Science and Technology in Sichuan Province(2016NZYD0003); Program of Department of Educational Commission in Sichuan Province(16ZB0265)]。作者简介: 方志荣(1981-) 女 四川冕宁人 博士 讲师 注要从事植物生理学研究 (Email) 172580110@qq.com。

5.8 , the optimal medium at the stage of induction of potato microtuber was MS_1 medium [two times of FeSO₄(Na_2 EDTA) and trace elements in MS medium] + 1.5% activated carbon + 4 mg • L^4 6-BA + 8% sucrose. The results also showed that illumination with dim light for 4 h • d^4 could obtain potato microtubers with higher frequency of tuberization and big microtubers than dark treatment. The results indicated that "solid + liquid" double-layer culture can be applied for mass propagation of potato tubers 'Mira' at low cost in the plant tissue culture room , and can increase the number of pre-elite seed potatoes. This method can also be used for the production of microtuber of other potato cultivars.

Key words: potato , microtuber , 6-BA , CCC , activated carbon , DA-6 , tissue culture

凉山州位于四川省的西南部 属于典型的高原 山地 区内光照充足、昼夜温差大,有利于马铃薯生 长,是四川省马铃薯主产区,尤其是二半山(海拔 1500 m) 以上的彝族聚居区 ,马铃薯既是当地农民 的主要粮食来源,也是主要的经济来源,在这些地 区发展马铃薯产业是贫困彝区农民脱贫致富的重 要渠道。2015年 "凉山州马铃薯平均单产 22.5 t· hm⁻² 远低于美国、比利时、新西兰等国的 46.9~48.7 t•hm²(世界粮农组织资料)。实践证明,推广应用 脱毒种薯能显著提高马铃薯的产量和品质。目前, 凉山州生产的脱毒种薯是以脱毒苗为基础 ,经过炼 苗、洗苗、移栽驯化等繁琐、复杂的过程,脱毒种薯 成本高 夏季网室大棚温度高 ,不能进行原种生产 , 导致凉山州内脱毒种薯远远不能满足生产的需求。 马铃薯脱毒试管薯(microtubers) 是指培养瓶内的试 管苗通过诱导培养,于叶腋内形成直径为 2~10 mm 大小的块茎(Vander Zaag, 1988)。马铃薯试管薯是 继脱毒试管苗之后发展起来的一种种质保存和生 产脱毒种薯的新形式,它体积小、重量轻,便于贮 藏、运输和保存,可以作为"种子"在大田中大规模 种植 既能加快脱毒种薯的繁殖 ,缩短种薯生产周 期,又能周年繁殖,应用已日益广泛。此外,马铃薯 试管薯被用于马铃薯基因工程研究中作为遗传转 化的受体。

影响马铃薯试管薯形成的因素很多,除与基因型(Khalil et al, 2017; Gopal et al, 2004) 有关外,还受温度(蒋从莲和郭华春, 2007; 马伟清等, 2010)、培养方式(帅正彬等, 2004; 白淑霞等, 2002)、光照(Hussain et al, 2006)、碳源(Gopal et al, 2004)、矿质营养(Radouani & Lauer, 2015; 马伟青等, 1999)、植物生长调节剂(Gopal et al, 2004)等多种因素的影响。Pelacho & Mingo-Castel

(1991) 指出,只有在诱导结薯的前一阶段培养出 茎干粗壮、根系发达、叶色浓绿的试管苗,才能获 得优质、高产的试管薯。因此,试管薯一般通过两 步法诱导,即先将马铃薯脱毒试管苗接种到壮苗 培养基上进行壮苗,然后进行试管薯诱导。不同 培养方式诱导试管薯的研究表明: 在相同浓度条 件下,液体培养基诱导的试管薯在结薯率、薯块重 量、薯块直径方面优于固体培养基(Piao et al, 2003; 白淑霞等, 2002)。但是, 液体培养操作繁 琐、污染率高、试管苗易折断、灭菌成本高。 液体"的"固液双层"培养方式虽然结薯率低一点, 但相比液体培养方式操作简单、污染率低、灭菌用 电少,适合大规模生产使用(帅正彬等,2004)。 本研究采用"固液双层"培养体系,使用正交试验 设计对壮苗阶段和试管薯诱导阶段的培养基成分 进行优化,并研究光照、蔗糖浓度及 CCC 浓度对试 管薯结薯的影响,以期能找到操作简便、生长周期 短的试管苗及试管薯的高效培养和诱导技术,为 试管薯的培养提供参考。

1 材料与方法

1.1 材料

供试材料为本实验室脱毒的'米拉(Mira)'试管苗。在无菌条件下,将试管苗切成带 $1 \sim 2$ 个叶节的茎段后接种于继代培养基,每瓶 $15 \sim 20$ 苗,接种后的培养瓶置于光照强度 $2~000 \sim 4~000~1$ x、光照时间 $16~h \cdot d^{-1}$ 、温度(25 ± 2) $^{\circ}$ C条件下培养,待苗长至约 10~cm 时备用。

1.2 方法

1.2.1 壮苗培养 取出'米拉'试管苗,在无菌条件下切成单节茎段,接种到壮苗培养基中,每瓶接种

10 个茎段。壮苗培养基成分为基础培养基 + CCC + 活性炭 + DA-6 + 1 mg • L¹6-BA + 0.1 mg • L¹NAA + 3%蔗糖 + 6 g • L¹琼脂 ,pH 5.8;基础培养基 ,CCC、AC 和 DA-6 的成分和浓度水平采用四因素三水平的正交设计进行试验(表1) ,共9 个处理 ,每个处理 5 瓶 ,接种后的培养瓶置于光照强度 2 000~4 000 lx、光照时间 16 h • d¹、温度(25±2) ℃的条件下培养 20 d ,统计各个处理的根数、茎粗、节间长度、鲜重和叶面积 ,找出适合 '米拉'脱毒试管苗的壮苗培养基。

1.2.2 试管薯诱导培养 试管薯的诱导采用固液 双层培养的方法,在无菌条件将 20 mL 无菌的液体培养基加入试管苗进行壮苗培养后的培养瓶中 液体培养基成分为基础培养基+蔗糖+6-BA+活性炭,pH 5.8。基础培养基、6-BA、活性炭和蔗糖的组合和浓度采用四因素三水平的正交设计进行试验(表 2),共9个处理,每处理5瓶,接种后在温度(25±2)℃、弱光4h•d⁻¹的条件下诱导结薯。诱导培养40d后,统计各处理的成薯指数(结薯数/结薯株数)、薯块重量(g)、大薯率(质量>0.1g)和薯块直径等,找出适合'米拉'试管薯的诱导培养基。

1.2.3 单因素试验

1.2.3.1 光照对试管署结署的影响 采用优化后的 壮苗培养基进行壮苗培养 ,20 d 后向培养瓶中加入 20 mL 的试管署诱导优化培养基 ,然后将培养 瓶分别放在(25±2) ℃下弱光 4 h • d $^{-1}$ 、弱光 8 h • d $^{-1}$ 、或全黑暗条件下进行培养 ,每个处理 5 瓶 ,40 d 后 观测 ,筛选利于试管署结署的光照条件。

1.2.3.2 蔗糖浓度对试管薯结薯的影响 采用优化 后的壮苗培养基进行壮苗培养 ,20 d 后向培养瓶中加入 20 mL 的无菌试管薯诱导培养基 ,诱导培养基中的蔗糖浓度为 $2\% \times 4\% \times 6\% \times 8\%$,之后在 (25 ± 2) $^{\circ}$ 、弱光 4 h • d $^{\circ}$ 条件下进行培养 $^{\circ}$ 40 d 后观测 ,筛选利于试管薯结薯的蔗糖浓度。

1.2.3.3 矮壮素浓度对试管薯结薯的影响 壮苗培养基采用改良 MS 培养基 + CCC + 1% 活性炭 + 0.1 mg・L⁻¹ DA-6 + 1 mg・L⁻¹6-BA + 0.1 mg・L⁻¹ NAA + 3%蔗糖 + 6 g・L⁻¹琼脂 pH 5.8 CCC 的浓度为 100 mg・L⁻¹和 500 mg・L⁻¹进行试管苗的壮

苗培养 20 d 后向培养瓶中加入 20 mL 的无菌试管薯诱导优化培养基,然后将培养瓶分别放在 (25 ± 2) °C、弱光 $4 \text{ h} \cdot \text{d}^{-1}$ 条件下进行培养,每个处理 5 瓶 40 d 后观测,确定壮苗培养阶段培养基中不同 CCC 浓度对试管薯结薯的影响。

1.3 数据收集和处理

所有数据用 SPSS 22.0 软件进行统计分析。 其中 壮苗培养基和试管薯诱导培养基的优化采 用极差、方差分析 ,单因素试验采用方差分析并用 LSD(*P*<0.05) 法进行差异显著性检验。

2 结果与分析

2.1 壮苗培养中最佳培养条件分析

2.1.1 不同处理对试管苗根数的影响 根的数量是判断试管苗生长优劣的参数之一。从表 3 可以看出,处理组合为 $A_1B_2C_2D_2$ 培养出的根数最多,每株达到 4.9 根,且根的长势较理想;各因素各水平极差分析结果(表 4)表明,各因素对根数的影响顺序为培养基种类 >活性炭 > DA-6 > CCC。在改良的 MS 培养基上根数相对较多,2MS 培养基上的组培苗根数少,长势弱。诱导根的最优组合为 $A_1B_2C_2D_1$ 。

2.1.2 不同处理对试管苗茎粗的影响 植株的茎粗可以反应植株生长的健壮程度 ,从表 3 可以看出 ,处理组合为 $A_1B_2C_2D_2$ 最健壮 ,达到每株 1.62 mm ,其余的 8 个处理组合在茎粗上无显著差异。表 4 结果表明 ,CCC、活性炭、培养基种类、DA-6 对茎粗的影响程度大致相等。

2.1.3 不同处理对试管苗节间长度的影响 从表 3 可以看出 ,处理组合 $A_3B_3C_1D_2$ 节间长度最短 ,为 2.90 mm ,处理组合为 $A_1B_2C_2D_2$ 节间长度为 3.87 mm ,但二者未表现出显著差异。处理组合 $A_1B_3C_3D_3$ 的节间长度最大 ,达到 8.27 mm。各因素各水平极差分析结果(表 4)表明 ,各因素对节间长度影响顺序为培养基种类 > CCC > DA-6 > 活性炭。节间长度最短的优化培养基配方为 $A_3B_2C_2D_2$ 。

2.1.4 不同处理对试管苗叶面积的影响 叶片是植物进行光合作用的器官,叶面积的大小又与植株的健壮度相关。从表 3 可以看出,各处理组合之

表 1 壮苗培养基的因素和水平表

Table 1 Factors and levels related to the best medium for virus-free plantlets vigorous growth

	因素 Factor						
水平 Level	A CCC 浓度 Concentration of CCC (mg·L ⁻¹)	B 活性炭浓度 Concentration of activated carbon (%)	C 培养基种类 Culture medium type	D DA-6 浓度 Conentration of DA-6 (mg • L ⁻¹)			
1	100(A ₁)	0.05(B ₁)	MS(C ₁)	0(D ₁)			
2	200(A ₂)	0.1(B ₂)	改良 MS(C ₂)	0.1(D ₂)			
3	500(A ₃)	0.15(B ₃)	2MS(C ₃)	1(D ₃)			

注: 改良 MS 培养基中硝酸铵变为 2 000 mg • L⁻¹、硝酸钾变为 2 000 mg • L⁻¹; 2MS 表示用量为原 MS 培养基的 2 倍。

Note: Modified MS medium means that NH_4NO_3 was changed to 2 000 mg • L^4 and KNO_3 was changed to 2 000 mg • L^4 , compared to MS medium; 2MS medium means that the dosage was two times of MS medium.

表 2 试管薯诱导培养基因素和水平表

Table 2 Factors and levels related to the best medium for potato microtuber induction

	因素 Factor						
水平 Level	A 蔗糖浓度 Concentration of sucrose (%)	B 6-BA 浓度 Concentration of 6-BA (mg・L ⁻¹)	C 活性炭浓度 Concentration of activated carbon (%)	D 培养基种类 Culture medium type			
1	8(A ₁)	2(B ₁)	0.5(C ₁)	MS(D ₁)			
2	10(A ₂)	4(B ₂)	1.0(C ₂)	$MS_1(D_2)$			
3	12(A ₃)	6(B ₃)	1.5(C ₃)	$MS_2(D_3)$			

注: $\mathrm{MS_1}$ 培养基中的微量元素和铁盐的用量改为原来的 2 倍; $\mathrm{MS_2}$ 培养基中 $\mathrm{KH_2PO_4}$ 的用量改为 340 $\mathrm{mg} \bullet \mathrm{L^4}$ 。

Note: MS_1 medium means two times of $FeSO_4$ (Na_2EDTA) and trace elements in MS medium; MS_2 means that KH_2PO_4 was changed to 340 mg • L^4 .

间 ,叶面积存在显著差异; 其中 ,组合 $A_1B_2C_2D_2$ 叶面积最大 达到 $0.27~cm^2$; 组合 $A_2B_3C_2D_1$ 、 $A_3B_1C_2D_3$ 、 $A_1B_3C_3D_3$ 、 $A_2B_1C_3D_2$ 最小 ,叶片较细。各因素各水平极差分析结果(表 4) 表明 ,各因素对叶面积的影响顺序为培养基种类 \approx CCC > DA-6 \approx 活性炭。叶面积最大的最优组合为 $A_1B_2C_2D_2$ 。

2.1.5 不同处理对试管苗鲜重的影响 由于培养容器面积及高度有限,因此鲜重最能直接反映出植株的健壮程度。从表 3 可以看出,处理组合 $A_1B_2C_2D_2$ 鲜重最大,每株达 0.20 g; 处理组合 $A_2B_3C_2D_1$ 、 $A_2B_2C_1D_3$ 、 $A_3B_3C_1D_2$ 鲜重最低,植株较纤细。各因素各水平极差分析结果(表 4)表明,

各因素对鲜重的影响顺序为 DA-6>CCC>培养基种 类 \approx 活性炭。适当浓度的 DA-6 能促进试管苗鲜 重的增加 在四因素中对鲜重的影响最大 ,其次为 CCC 培养基种类和活性炭的影响最小。鲜重最大的优化培养基配方为 $A_1B_2C_2D_2$ 。

综合考虑 本研究选择 $A_1B_2C_2D_2$,即改良MS + $100 \text{ mg} \cdot \text{L}^{-1} \text{ CCC} + 0.1\%$ 活性炭 + $0.1 \text{ mg} \cdot \text{L}^{-1}$ DA-6 + $1 \text{ mg} \cdot \text{L}^{-1} \text{ 6-BA} + 0.1 \text{ mg} \cdot \text{L}^{-1} \text{ NAA} + 3\%$ 蔗糖+ $6 \text{ g} \cdot \text{L}^{-1}$ 琼脂 ,pH 5.8 作为壮苗培养基的优化培养基配方 ,利用该配方进行壮苗培养 ,根数、茎粗、鲜重、叶面积在所有处理中最大 ,而节间长度较短 ,达到壮苗培养要求。

表 3 壮苗培养正交试验结果与 LSD 分析结果

Table 3 Results of orthogonal test and LSD analysis at the stage of virus-free plantlets vigorous growth

		因素 Factor								
处理 Treatment	组合 Combination	A CCC 浓度 Concentration of CCC (mg·L ⁻¹)	B 活性炭 浓度 Concentration of activated carbon (%)	C 培养基 种类 Culture medium type	D DA-6 浓度 Concentration of DA-6 (mg • L ⁻¹)	根数 Root number (root • plantlet ⁻¹)	茎粗 Stem diameter (mm)	鲜重 Fress biomass (g• plantlet ⁻¹)	节间长度 Internode length (mm)	叶面积 Leaf area (cm²)
1	$A_1B_2C_2D_2$	100	0.1	C_2	0.1	4.9e	1.62b	0.20e	3.87ab	0.27d
2	$\mathbf{A}_1\mathbf{B}_1\mathbf{C}_1\mathbf{D}_1$	100	0.05	\mathbf{C}_1	0	2.3e	0.94a	0.12ab	7.23cde	$0.14 \mathrm{bc}$
3	$\mathbf{A_2B_3C_2D_1}$	200	0.15	C_1	0.1	0a	0.90a	0.11a	6.33ed	0.11a
4	$\mathbf{A_2B_2C_1D_3}$	200	0.1	C_3	0	1.8bc	0.93a	0.11a	7.50de	0.12ab
5	$A_3B_1C_2D_3$	500	0.05	C_3	0.1	0a	0.89a	$0.14 \mathrm{cd}$	4.97b	0.11a
6	$\mathbf{A_3B_2C_3D_1}$	500	0.1	\mathbf{C}_1	1	1.5b	0.89a	0.12ab	4.40b	0.12ab
7	$\mathbf{A_3B_3C_1D_2}$	500	0.15	C_2	0	3.4d	0.97a	0.11a	2.90a	0.15e
8	$A_1B_3C_3D_3$	100	0.15	C_3	1	0a	0.90a	$0.13 \mathrm{cd}$	8.27e	0.10a
9	$\mathbf{A_2B_1C_3D_2}$	200	0.05	C_2	1	2.3c	0.90a	0.13bcd	4.37b	0.10a

注:数据代表5个重复的平均值。相同字母表示差异不显著,不同字母表示差异显著(P<0.05)。下同。

Note: Data represent the mean values of five replicates. Same letters indicate no significant difference , different letters indicate significant differences (P < 0.05). The same below.

2.2 试管薯诱导培养基及最佳培养条件分析

2.2.1 不同处理对试管薯成薯指数的影响 由表 5 可知 不同处理组合对成薯指数有显著影响 ,处理组合 $A_1B_2C_3D_2$ 成薯指数最大(为 1.23) 其次为处理组合 $A_3B_3C_3D_1$,成薯指数为 0.87 ,其余组合成薯指数无显著差异。各因素、各水平极差分析结果(表 6)表明 ,各因素对成薯指数的影响顺序为 6-BA >活性炭 > 蔗糖 > 培养基种类 ,适当浓度的 6-BA 能增加成薯指数 ,对成薯指数的影响最大 ,其次为活性炭 蔗糖和培养基种类对成薯指数的影响较小。成薯指数最大的培养基组合为 $A_1B_2C_3D_2$ 。

2.2.2 不同处理对试管薯薯块重量的影响 由表 5 可知 組合 $A_1B_2C_3D_2$ 薯块重量最大 ,为每粒 0.25~g ,且与其他处理差异显著。极差分析结果(表 6)表明 ,各因素对试管薯薯块重量的影响顺序为6-BA >活性炭 > 培养基种类 > 蔗糖 表明可以通过适当调整 6-BA 和活性炭浓度增加薯块重量。诱导薯块重量增加的最优培养基组合为 $A_1B_2C_3D_2$ 。

2.2.3 不同处理对试管薯大薯率的影响 由表 5 可 知 处理组合 A₁B₂C₃D₂大薯率最大(为 66.15%); 处 理组合 A₂B₃C₂D₂、A₃B₃C₃D₁、A₁B₃C₂D₃与 A₁B₂C₃D₂ 无显著差异; 处理组合 $A_1B_1C_1D_1$ 大薯率最小(为 9.34%)。表 6 结果表明 ,各因素对试管薯大薯率 的影响顺序为 6-BA > 培养基种类 > 活性炭 > 蔗 糖: 适当浓度的 6-BA 能增加大薯率,对大薯率的 影响最大,培养基种类次之,增加 KH,PO4的使用 量能提高大薯率,活性炭和蔗糖对大薯率的影响 相对较小。大薯率最高的培养基组合为 $A_1B_2C_3D_3$ 。 2.2.4 不同处理对试管薯薯块直径的影响 由表 5 可知,处理组合 $A_1B_2C_3D_2$ 薯块直径最大(为 6.3 mm) 与其他组合存在显著差异 处理组合 A₁B₁C₁D₁ 薯块直径最小(仅为 2.2 mm)。表 6 结果表明 ,各 因素对试管薯薯块直径的影响顺序为活性炭>培 养基种类≈6-BA >蔗糖: 活性炭浓度的增加能提 高薯块的直径,对薯块直径的影响最大,其次为培 养基种类和 6-BA, 蔗糖浓度影响最小。薯块直径

表 4 壮苗培养基各因素、各水平极差分析结果

Table 4 Range analysis of the factors and levels related to the best medium for vigorous growth of virus-free plantlets

生理指标 Physiological index		A CCC 浓度 Concentration of CCC (mg•L ⁻¹)	B 活性炭浓度 Concentration of activated carbon (%)	C 培养基种类 Culture medium type	D DA-6 浓度 Concentration of DA-6 (mg • L ⁻¹)	— 极差分析结果 Result of range analysis
根数 Root number	K1	2.38	1.51	1.25	2.48	各因素对根数的影响顺序: 培养基种 类 >活性炭 > DA-6 > CCC。
(root • plantlet -)	K2	1.36	2.71	3.50	1.62	The order of factors affecting the root number was culture medium type > acti-
	К3	1.61	1.12	0.60	1.25	vated carbon> DA-6 > CCC. 根数最多的最优组合: A ₁ B ₂ C ₂ D ₁ 。
	R	1.02	1.59	2.25	1.23	The optimal combination with maximum number of roots was $A_1B_2C_2D_1$.
茎粗 Stem	K1	1.15	0.91	0.91	0.95	各因素对茎粗的影响顺序: CCC≈活性炭≈培养基种类≈DA-6。
diameter (mm)	K2	0.91	1.15	1.15	1.14	The order of factors affecting stem diameter was $CCC \approx$ activated carbon \approx culture medium type \approx DA-6.
	К3	0.92	0.92	0.92	0.90	茎粗最大的最优组合: A ₁ B ₂ C ₂ D ₂ 。 The optimal combination with maximum
	R	0.24	0.24	0.24	0.24	stem diameter was $A_1B_2C_2D_2$.
鲜重 Fresh	K1	0.15	0.13	0.13	0.11	各因素对鲜重的影响顺序: DA-6 > CCC >培养基种类≈活性炭。
biomass (g • plantlet [¬])	K2	0.12	0.14	0.14	0.15	The order of factors affecting fresh biomass was DA-6 > CCC > culture medium type ≈ activated carbon.
	К3	0.12	0.12	0.12	0.13	鲜重最大的最优组合: A ₁ B ₂ C ₂ D ₂ 。 The optimal combination with maximum
	R	0.03	0.02	0.02	0.04	fress biomass was $A_1B_2C_2D_2$.
节间长度 Internode length	K1	6.46	5.52	5.99	5.88	各因素对节间长度的影响顺序: 培养基种类>CCC >DA-6>活性炭。 The order of factors affecting internode
(mm)	K2	6.07	5.26	3.71	5.06	length was culture medium type > CCC > DA-6 > activated carbon. 节间长度最短的最优组合为 A ₃ B ₂ C ₂ D ₂ 。
	К3	4.09	5.83	6.91	5.68	The optimal combination with maximum in ternode length was $A_3B_2C_2D_2$.
	R	2.37	0.57	3.2	0.82	
叶面积 Leaf	K1	0.17	0.12	0.12	0.14	各因素对叶面积的影响顺序: 培养基种类~CCC >DA-6~活性炭。
area (cm²)	K2	0.11	0.17	0.17	0.16	The order of factors affecting leaf area was culture medium type > CCC > DA-6 ≈ activated carbon.
	К3	0.13	0.12	0.11	0.11	叶面积最大的最优组合: $A_1B_2C_2D_2$ 。 The optimal combination with maximum
	R	0.06	0.05	0.06	0.05	leaf area was $A_1B_2C_2D_2$.

最大的培养基组合为 $A_1B_2C_3D_2$ 。

综合考虑 ,选择组合 $A_1B_2C_3D_2$,即 MS_1 + 1.5% 活性炭 + 4 mg • L^4 6-BA + 8%蔗糖为试管薯诱导

的适合培养基。

2.3 单因素试验结果

2.3.1光照对结薯率的影响 光照是影响马铃薯

表 5 试管薯诱导正交试验结果和 LSD 分析结果

Table 5 Results of orthogonal test and LSD analysis at the stage of potato microtuber induction

处理 Treatment	组合 Combination	A 蔗糖浓度 Concentration of sucrose (%)	B 6-BA 浓度 Concentration of 6-BA (mg·L ⁻¹)	C 活性炭浓度 Concentration of activated carbon (%)	D 培养基 种类 Culture medium type	成薯指数 Index of production	平均薯重 Average tuber weight (g•tuber ⁻¹)	大薯率 Percentage of big tuber (%)	薯块直径 Tuber diameter (mm)
1	$A_1B_2C_3D_2$	8	4	1.5	MS_1	1.23e	0.25e	66.15c	6.3e
2	$\mathbf{A}_1\mathbf{B}_1\mathbf{C}_1\mathbf{D}_1$	8	2	0.5	MS	0.63ab	0.03a	9.34a	2.2a
3	$\mathbf{A_2B_3C_2D_2}$	10	6	0.5	MS_1	0.53a	0.06ab	44.44bc	2.9ab
4	$\mathbf{A_2B_2C_2D_1}$	10	4	1.0	MS	0.50a	0.08b	27.78ab	3.3ab
5	$\mathbf{A_3B_1C_2D_2}$	12	2	1.0	MS_1	0.47a	0.06ab	34.44ab	3.5b
6	$\mathbf{A_3B_2C_1D_3}$	12	4	0.5	MS_2	0.60a	0.05ab	32.14ab	2.7ab
7	$A_3B_3C_3D_1$	12	6	1.5	MS	0.87b	0.06ab	45.77be	3.4ab
8	$\mathbf{A}_1\mathbf{B}_3\mathbf{C}_2\mathbf{D}_3$	8	6	1.0	MS_2	0.53a	0.07ab	45.83bc	3.4ab
9	$\mathbf{A}_2\mathbf{B}_1\mathbf{C}_3\mathbf{D}_3$	10	2	1.5	MS_2	0.53a	0.05ab	28.89ab	2.9ab

试管薯形成的主要因素,由表 7 可知,随着光照时间的延长,弱光 8 h · d · 处理成薯指数和最大薯重显著增加;但平均薯重弱光 8 h · d · 与黑暗培养无显著差异;大薯率弱光 8 h · d · 处理明显低于弱光 4 h · d · 及黑暗培养;而薯块直径则是弱光 4 h · d · 和弱光 8 h · d · 处理高于黑暗培养。大薯率是试管薯诱导中的一个重要指标,应在保证大薯率的前提下,兼顾平均薯重、薯块直径和成薯指数等参数。因此认为,最佳结薯的光照条件应为弱光处理4 h · d · d · 。

2.3.2 蔗糖浓度对试管薯结薯的影响 从表 8 可以看出 随着蔗糖浓度的增加 ,成薯指数和大薯率显著增加; 在 8%的蔗糖浓度下 ,成薯指数达 1.25 ,大薯率达到 95.63% ,最大薯重达到每粒 0.491 g; 在薯块重量和薯块直径方面 ,8%的蔗糖浓度与 4%和 6%无显著差异 ,但明显高于 2%(表 8)。 10%和 12%的高蔗糖浓度下 ,试管薯的成薯指数、薯块重量、大薯率和薯块直径都明显下降(表 6)。因此认为 ,适宜的蔗糖浓度应为 8%。

2.3.3 矮壮素浓度对试管薯结薯的影响 由表 9 可知 $500 \text{ mg} \cdot \text{L}^{-1}$ CCC 处理与 $100 \text{ mg} \cdot \text{L}^{-1}$ CCC 处理相比 ,成薯指数与最大薯重分别提高了 29.72%和

14.71%。前期壮苗阶段,CCC 的浓度宜采用 500 mg • L⁻¹。

3 讨论

在马铃薯试管薯结薯研究中,邱彩玲等(2008) 发现,试管苗长势与试管薯均粒重成显著或极显著 正相关,健壮试管苗比幼嫩试管苗容易结薯(鄢铮 和郭德章,2004)。因此,培育健壮试管苗是生产较 大试管薯的先决条件。"固液双层"培养方式可以 对试管苗生长阶段和试管薯诱导及生长阶段进行 调控,已成为试管薯诱导的常用方法(白淑霞等, 2002;帅正彬等,2004;王瑞斌等,2006)。

在马铃薯试管苗壮苗培养中,在原 MS 培养基的基础上将硝酸铵浓度变为2 000 mg • L⁻¹、硝酸钾浓度变为2 000 mg • L⁻¹、与 MS 和 2 倍 MS 培养基相比.植株鲜重和叶面积增加,植株长势粗壮,节间缩短,这与马伟青等(1999)的研究结论一致;但在另外的研究中发现,2 倍 MS 培养基能促进马铃薯'克新 4 号'和'克新 2 号'试管苗的生长,使其健壮生长(金顺福等,1995),这与本研究结果不一致,可能跟马铃薯的品种和基因型差异有关

表 6 试管薯诱导培养基各因素、各水平极差分析结果

Table 6 Range analysis of the factors and levels related to the best medium for potato microtuber induction

			因素				
生理指标 Physiological ir	- ndex	A 蔗糖浓度 Concentration of sucrose (%)	B 6-BA 浓度 Concentration of 6-BA (mg·L ⁻¹)	C 活性炭浓度 Concentration of activated carbon (%)	D 培养基种类 Culture medium type	 极差分析结果 Result of range analysis	
成薯指数 Index of production	K1	0.80	0.54	0.59	0.67	各因素对成薯指数的影响顺序: 6-BA > 活性炭 > 蔗糖 > 培养基种类。 The order of factors affecting index of	
	K2	0.52	0.78	0.50	0.74	production was 6-BA > activated carbon > sucrose> culture medium type. 成著指数最大的最优组合: A ₁ B ₂ C ₃ D ₂ 。	
	К3	0.65	0.64	0.88	0.55	The optimal combination with maximum index of production was $A_1B_2C_3D_2$.	
	R	0.28	0.54	0.38	0.19		
平均薯重 Average tuber weight	K1	0.117	0.047	0.047	0.057	各因素对薯块重量的影响顺序: 6-BA > 活性炭 > 培养基种类 > 蔗糖。 The order of factors affecting average	
(g • tuber ·)	K2	0.063	0.127	0.070	0.123	tuber weight was 6-BA > activated carbon > culture medium type > sucrose. 薯块重量最大的最优组合: $A_1B_2C_3D_2$ 。	
	К3	0.057	0.063	0.120	0.057	The optimal combination with maximum average tuber weight was $A_1B_2C_3D_2$.	
	R	0.06	0.08	0.073	0.066		
大薯率 Percentage of	K1	40.44	24.22	28.64	27.63	各因素对大薯率的影响顺序: 6-BA > 培养基种类 > 活性版 > 蔗糖。	
big tuber (%)	K2	33.70	42.02	36.02	48.34	The order of factors affecting percentage of big tubers was 6-BA > culture medium type > activated carbon > sucrose.	
	К3	37.45	45.35	46.94	35.62	大薯率最大的最优组合: A ₁ B ₃ C ₃ D ₂ 。 The optimal combination withpercentage	
	R	6.74	21.13	18.3	20.71	of big tubers was $A_1B_3C_3D_2$.	
薯块直径 Tuber diameter (mm)	K1	3.97	2.87	2.60	2.97	各因素对薯块直径的影响顺序: 活性 炭 > 培养基种类≈6-BA > 蔗糖。 The order of factors affecting tuber diam-	
(,	K2	3.03	4.10	3.40	4.23	eter was activated carbon $>$ culture medium type \approx 6-BA $>$ sucrose.	
	К3	3.20	3.23	4.20	3.00	薯块直径最大的最优组合: A ₁ B ₂ C ₃ D ₂ 。 The optimal combination with maximum	
	R	0.94	1.23	1.60	1.26	tuber diameter was $A_1 B_2 C_3 D_2$.	

(Khalil et al, 2017)。 CCC 是一种植物生长延缓剂,能使试管苗节间缩短,茎粗、叶片数和有效扩繁节段数增加,但过高浓度则引起毒害,如导致过度低矮、叶片反卷、叶片黄化脱落等现象(吴艳清等,2015)。本研究发现100 mg·L¹CCC 下植株鲜重最大,500 mg·L¹CCC 抑制了植物的生长,明

显地缩短了节间长度,但未表现出明显的毒性。 胺鲜酯(DA-6,2-N,N-乙氨基乙基己酸酯)是广谱性细胞分裂素类植物生长调节剂,一定浓度的DA-6能提高草莓植株的叶面积、光合速率以及叶绿素含量,增加草莓的单产(苗鹏飞等,2007)。DA-6在马铃薯试管苗的繁殖方面鲜有报道,本研究发

表 7 不同光照条件对试管薯结薯的影响

Table 7 Effects of different light conditions on potato microtuber induction

处理 Treament	成薯指数 Index of production	平均薯重 Average tuber weight (g•tuber ⁻¹)	大薯率 Percentage of big tuber (%)	最大薯重 The biggest tuber weight (g•tuber¹)	薯块直径 Tuber diameter (mm)
黑暗培养 Darkness	1.18±0.02a	0.160 ± 0.002 a	81.70±7.57b	$0.304 \pm 0.005 a$	0.43±0.04a
弱光 4 h・d ^{-l} Dim light 4 h・d ^{-l}	$1.25 \pm 0.02 \mathrm{b}$	0.257 ± 0.025 b	95.63±2.63b	0.491 ± 0.072 a	0.67 ± 0.03 b
弱光 8 h • d · d · Dim light 4 h • d ·	1.38±0.00c	0.201±0.033a	63.97±0.33a	0.628±0.090b	0.58 ± 0.03 b

注: 数据代表 5 个重复的平均值±标准差。下同。

Note: Data represent the mean value ± standard deviation from five replicates. The same below.

表 8 不同蔗糖浓度对试管薯结薯的影响

Table 8 Effects of different sucrose concentrations on potato microtuber induction

蔗糖浓度 Concentration of sucrose (%)	成薯指数 Index of production	平均薯重 Average tuber weight (g•tuber ⁻¹)	大薯率 Percentage of big tuber (%)	最大薯重 The biggest tuber weight (g•tuber ⁻¹)	薯块直径 Tuber diameter (mm)
2	0.53±0.03a	0.121±0.023a	30.00±5.77a	0.234±0.035a	0.490±0.059a
4	$0.86 \pm 0.03 \mathrm{b}$	$0.240 \pm 0.030 \mathrm{b}$	$56.98 \pm 6.31 \mathrm{b}$	$0.354 \pm 0.009 \mathrm{b}$	$0.523 \pm 0.057 \mathrm{ab}$
6	$1.04 \pm 0.04 c$	$0.261 \pm 0.009 \mathrm{b}$	75.71±2.97c	$0.459\!\pm\!0.038 \mathrm{be}$	$0.526 \pm 0.042 \mathrm{ab}$
8	$1.25\!\pm\!0.02\mathrm{d}$	0.257 ± 0.025 b	$95.63 \pm 2.63 d$	$0.491 \pm 0.072 \mathrm{c}$	$0.672 \pm 0.026 \mathrm{b}$

表 9 不同 CCC 浓度对试管薯结薯的影响

Table 9 Effects of different CCC concentrations on potato microtuber induction

CCC 浓度 Concentration of CCC (mg • L ⁻¹)	成薯指数 Index of production	平均薯重 Average tuber weight (g•tuber¹)	大薯率 Percentage of big tuber (%)	最大薯重 The biggest tuber weight (g•tuber ⁻¹)	薯块直径 Tuber diameter (mm)
100	1.25±0.02	0.257 ± 0.025	95.633±2.633	0.491 ± 0.072	0.672±0.026
500	1.63 ± 0.07	0.243 ± 0.023	92.277±0.341	0.563 ± 0.014	0.620±0.021

现 0.1 mg·L¹DA-6 使马铃薯 '米拉' 试管苗植株鲜重、叶面积和茎粗增加 ,节间长度缩短 ,植株长势粗壮 ,因此 DA-6 可用于马铃薯试管薯的扩繁中。在培养基中加入适量的活性碳会促进试管苗的生长和生根(夏静波等,2011)。本研究中,0.1%的活性炭对马铃薯 '米拉'试管苗的生长有促进作用 ,表现为根数、茎粗、鲜重和叶面积增加 ,节间缩短 ,植株健壮等 ,可用于壮苗培养。

在马铃薯试管苗结薯培养中,将 MS 培养基中的微量元素和铁盐的用量改为原来的 2 倍,成薯指数、薯块重量、大薯率和薯块直径均得到提高。也有研究发现,将 MS 培养基中的微量元素提高 4 倍,可以诱导结薯(刘仁祥,2001);或将 MS 培养基中铁盐的用量改为原来的 2 倍,可以增加薯块重量(张志军,2004)。我们在 MS 培养基的基础上将 KH₂PO₄的用量改为 340 mg·L¹,成薯指数

下降,大薯率增加。过高的磷酸二氢钾降低结薯 数量,但薯块重量增加,建议将培养基的磷浓度调 整为 255 mg • L⁻¹(张志军 , 2004) 。 因此 ,MS 培养 基中的微量元素、铁盐及KH、PO、的用量还需要通 过试验进一步优化。在马铃薯试管薯结薯培养 中,为了缩短生产周期,提高试管薯的产量和质 量,使用外源激素是必要的,其中6-BA常用且效 果最为显著(胡云海和蒋先明,1989;杨宏羽等, 2008);本研究发现,在设定的因素和水平下,6-BA 对成薯指数,薯块重量,大薯率的影响最大,说明 6-BA 对马铃薯'米拉'试管苗的结薯是必须的。 高浓度的蔗糖 (6%~10%) 是试管薯诱导过程中 必不可少的条件(胡云海和蒋先明,1989;吕长文 等, 2004; Gopal et al, 2004); 马铃薯 '米拉'的结 薯培养基中最适蔗糖浓度为8% (Elaleem et al, 2015; 胡云海和蒋先明, 1989; KhalilL et al, 2017) 较高或较低的蔗糖浓度会对试管薯的诱导 及生长产生不利的影响,这与本研究结果一致。 活性炭作为一种吸附剂,在马铃薯试管薯的诱导 方面具有明显的效果,促进马铃薯试管薯的生成, 1.5%的活性炭增加试管薯的成薯指数、薯块重量、 大薯率和薯块直径,此外活性炭的加入减弱了培 养基中的光照,促进了营养物质的转移,并吸附了 代谢中产生的有害物质,从而促进结薯。光照是 影响马铃薯试管薯形成的主要原因,试管薯的诱 导及生长需要在黑暗条件下完成(Hussain et al, 2006; 崔翠等, 2001; Ali et al, 2018; Elaleem et al, 2015)。马铃薯'米拉'结薯对光照不敏感(崔 翠等,2001) 散射光是诱导'米拉'结薯的最佳条 件(赵佐敏,2005)。本研究结果表明,在弱光4 h • d → 条件下进行结薯培养,成薯指数、薯块重量、 大薯率、最大薯重、薯块直径均高于暗培养,这与 光照可以延迟叶片衰老(Slimmon et al, 1989),不 断地为试管薯的生长和发育提供能量有关。弱光 4 h • d · 处理的试管薯在膨大期会超出液体培养 基 因此采摘时的发芽率高 ,而黑暗条件下诱导的 试管薯采摘时发芽率低,有休眠期,这与帅正彬等 (2004)的研究结果一致。因此,利用这一特点,可 以根据需要选择弱光或光照培养,需要立即播种 的可以采用弱光诱导,需要贮藏、运输的试管薯,

可以采用黑暗诱导。由于多数的试管薯着生在试管苗基部、少数着生在中上部,因此缩短节间的长度可以让更多的节间浸泡在诱导培养基中以产生更多的试管薯。本研究发现前期壮苗采用 500 mg • L⁻¹ CCC 处理,可以使后期试管薯的成薯指数、最大薯重分别增加 29.72%和 14.71%。体积大的试管薯具有较高的发芽率,可以获得整齐一致的幼苗,0.5 g 以上的试管薯可以作为"种子"(Park et al, 2009) 直接用于生产,因此试管大薯的培养十分重要。

本研究得出马铃薯'米拉'"固液双层"培养法在试管苗壮苗培养及结薯诱导阶段培养基的配方及培养条件,获得了较高的成薯指数、薯块重量、大薯率和薯块直径,为该品种及其他马铃薯主栽品种的种薯快繁提供技术参考,有重要的科学及应用价值。

参考文献:

- ALI S , KHAN N , NOUROZ F , et al , 2018. Effects of sucrose and growth regulators on the microtuberization of potato germplasm [J]. Pak J Bot , 50(2): 763–768.
- BAI SX, AN ZM, WANG J, et al, 2002. Effects of different methods on growth of plantlets and microtuber induction in potato [J]. Chin J Ecol-Agric, 10(2): 40-41. [白淑霞, 安忠民,王静,等,2002. 不同培养方式对马铃薯试管苗生长与试管薯诱导的影响 [J]. 中国生态农业学报,10(2):40-41.]
- CUI C, HE FF, WANG JC, et al, 2001. Effects of photoperiod and carbon sources on the formation of microtubers of potato in vitro [J]. J SW Agric Univ(Nat Sci Ed), 23(6):547-548. [崔翠,何凤发,王季春,等,2001. 光照时间和碳源对试管薯形成的影响[J]. 西南大学学报(自然科学版),23(6):547-548.]
- ELALEEM KGA, MODAWI RS, KHALAFALLA MM, 2015. Microtuber induction of two potato (*Solanum tuberosum* L.) varieties namely, Almera and Diamant [J]. Int Res J Biol Sci, 4(3): 84–89.
- GOPAL J, CHAMAIL A, SARKAR D, 2004. *In vitro* production of microtubers for conservation of potato germplasm: Effect of genotype, abscisic acid, and sucrose [J]. *In Vitro* Cell Dev Biol-Plant, 40(5): 485–490.
- HU YH, JIANG XM, 1989. The effect of different kinds of sugar and ba on the formation of *in vitro* tubers of potato(Solanum tuberosum L.) [J]. Chin Potato J, 3(4): 203-206. [胡云海,蒋先明,1989. 不同糖类和对马铃薯试管薯的影响 [J]. 中国马铃薯, 3(4): 203-206.]

- HUSSAIN I, CHAUDHRY Z, MUHAMMAD A, et al, 2006. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal) [J]. Pakistan J Bot, 38(2): 275–282.
- JIANG CL, GUO HC, 2007. Effects of exogenous hormones and temperature on the formation of potato micro-tuber *in vitro* [J]. J Yunnan Agric Univ, 22(6):824-828. [蒋从莲,郭华春,2007. 不同外源激素和培养温度对马铃薯试管薯形成的影响 [J]. 云南农业大学学报,22(6):824-828.]
- JIN SF, JIANG CM, CUI ZG, et al, 1995. Culturing vigorous potato plantlets in vitro [J]. Chin Potato J, 9(3): 139-143. [金顺福,姜成模,崔哲官,等,1995. 培育健壮马铃薯试管苗试验 [J]. 马铃薯杂志,9(3): 139-143.]
- KHALIL MM, ABD EL AAL AMH, SAMY MM, 2017. Studies on microtuberization of five potato genotypes [J]. Egypt J Hortic, 44(1): 91–97.
- LIU RX, 2001. Effect of activated charcoal and inorganic nutrition on the induction of the test-tube potato [J]. Plant Physiol Comm, 37(4): 295-298. [刘仁祥, 2001. 活性炭和无机盐对马铃薯试管薯的诱导效应简报 [J]. 植物生理学通讯, 37(4): 295-298.]
- LÜ CW, WANG JC, HE QX, et al, 2004. Influences of culture medium composition and method on micro-tuberization of potato [J]. J SW Agric Univ(Nat Sci Ed), 26(1): 30-34. [吕长文,王季春,何庆学,等,2004. 诱导法与营养液配方对马铃薯试管结薯的影响 [J]. 西南大学学报(自然科学版),26(1): 30-34.]
- MA WQ, WANG PL, HUANG CH, et al, 1999. Effect of nitrogen, phosphorus and potassium content in medium of growth in vitro cultured potato seedlings [J]. Shandong Agric Sci, 149(4): 35-36. [马伟青,王培伦,黄传红,等,1999. 培养基中氮磷钾对马铃薯试管苗生长的影响 [J]. 山东农业科学,149(4): 35-36.]
- MA WQ, DONG DF, CHEN GX, et al, 2010. Effect of light length, light intensity and temperature on microtuber induction in vitro [J]. Chin Potato J, 24(5): 257-62. [马伟清,董道峰,陈广侠,等,2010. 光照长度、强度及温度对试管薯诱导的影响[J]. 中国马铃薯,24(5): 257-62.]
- MIAO PF, LIU GJ, SHAN SM, 2007. Effect of DA-6 on growth and fruit of strawberry [J]. Chin Fruit, 125(3): 22-25. [苗鵬飞,刘国杰,单守明,2007. DA-6 对草莓生长结果影响试验 [J]. 中国果树,125(3): 22-25.]
- PARK SW , JEON JH , KIM HS , et al , 2009. The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar 'Superior' [J]. Sci Hortic , 120(1): 127–129.
- PELACHO AM, MINGO-CASTEL AM, 1991. Jasmonic acid induces tuberization of potato stolons cultured *in vitro* [J]. Plant Physiol, 97(3): 1253–1255.
- PIAO XC, CHAKRABARTY D, HAHN EJ, et al, 2003. A simple method for mass production of potato microtubers using a bioreactor system [J]. Curr Sci, 84: 1129–1132.
- QIU CL, SU FF, WANG SP, et al, 2008. Correlations of white

- sugar concentration with *in vitro* plantlet vigor and microtuber yield of potato [J]. Chin Potato J, 22(5): 266-269. [邱彩玲,宿飞飞,王绍鹏,等,2008. 白糖浓度与马铃薯试管苗长势及试管薯产量的相关性 [J]. 中国马铃薯,22(5): 266-269.]
- RADOUANI A , LAUER FI , 2015. Effect of NPK media concentrations on *in vitro* potato tuberization of cultivars Nicola and Russet Burbank [J]. Am J Potato Res , 92(2): 294–297.
- SHUAI ZB, GUO JH, YANG B, et al, 2004. Effects of different culture condition on the induction of potato microtubers [J]. SW Chin J Agric Sci, 17(2):212-214. [帅正彬,郭江洪,杨斌,等,2004. 不同培养条件对马铃薯试管薯诱导的影响 [J]. 西南农业学报,17(2):212-214.]
- SLIMMON T, MACHADO VS, COFFIN R, 1989. The effect of light on *in vitro* microtuberization of potato cultivars [J]. Am Potato J, 66(12): 843–848.
- WANG RB, WANG D, SI HJ, 2006. Study on induction of potato microtuber by interaction of edible sugar with activated charcoal [J]. J Gansu Agric Univ, 41(4): 35-40. [王瑞斌,王蒂,司怀军,2006. 食用白糖和活性炭互作诱导马铃薯试管薯的研究 [J]. 甘肃农大学报,41(4): 35-40.]
- WU YQ, WANG YY, ZHAO XP, et al, 2015. Different doncentration of CCC effects on the growth of R6 resistance genes potato tube seedings [J]. J Shaoguan Univ(Nat Sci Ed), 36(4): 41-45. [吴艳清,王游游,赵旭鹏,等, 2015. 不同浓度对抗性基因马铃薯试管苗生长的影响[J]. 韶关学院学报(自然科学版), 36(4): 41-45.]
- VANDER ZAAG DE, 1988. Recent trends in development, production and utilization of the potato crop in the world [J]. APA Proc, 1(1): 12–19.
- XIA JB, XIA P, QIU GW, et al, 2011. Application of activated carbon in potatoes tissue culture [J]. Heilongjiang Agric Sci, 203(5):16-17. [夏静波,夏平,邱广伟,等,2011. 活性炭在马铃薯组织培养中的应用 [J]. 黑龙江农业科学,203(5):16-17.]
- YAN Z, GUO DZ, 2004. The influence of plant hormones on microtuber production [J]. Chin Potato J, 18(2): 84-86. [鄢铮,郭德章,2004. 植物激素对马铃薯试管薯形成的影响[J]. 中国马铃薯,18(2): 84-86.]
- YANG HY, WANG D, PAN X, 2008. Effect of hormone and culture methods on potato microtuber induction [J]. J Gansu Agric Univ, 43(2): 74 77. [杨宏羽,王蒂,潘新, 2008. 外源激素及培养方式对马铃薯试管薯的诱导效应 [J]. 甘肃农业大学学报, 43(2): 74–77.]
- ZHANG ZJ, 2004. Studies on the microtuber propagation and regulation mechanism in potato [D]. Hangzhou: Zhejiang University: 27-33. [张志军, 2004. 马铃薯试管薯快繁及 其调控机理研究 [D]. 杭州: 浙江大学: 27-33.]
- ZHAO ZM, 2005. Impact of various factors on the induction of microtubers [J]. Chin Potato J, 19(5): 278-280. [赵佐敏, 2005. 马铃薯组培中不同因素对诱导试管薯的影响[J]. 中国马铃薯, 19(5): 278-280.]